swetnisha roy

The SDLC is a process used by a systems analyst to develop an information system, including requirements, validation, training, and user (stakeholder) ownership. Any SDLC should result in a high quality system that meets or exceeds customer expectations, reaches completion within time and cost estimates, works effectively and efficiently in the current and planned Information Technology infrastructure, and is inexpensive to maintain and cost-effective to enhance.[2] Computer systems are complex and often (especially with the recent rise of service-oriented architecture) link multiple traditional systems potentially supplied by different software vendors. To manage this level of complexity, a number of SDLC models or methodologies have been created, such as "waterfall"; "spiral"; "Agile software development"; "rapid prototyping"; "incremental"; and "synchronize and stabilize".[3] SDLC models can be described along a spectrum of agile to iterative to sequential. Agile methodologies, such as XP and Scrum, focus on lightweight processes which allow for rapid changes along the development cycle. Iterative methodologies, such as rational unified process and dynamic systems development method, focus on limited project scope and expanding or improving products by multiple iterations. Sequential or big-design-up-front (BDUF) models, such as Waterfall, focus on complete and correct planning to guide large projects and risks to successful and predictable results[citation needed]. Other models, such as Anamorphic Development, tend to focus on a form of development that is guided by project scope and adaptive iterations of feature development. In project management a project can be defined both with a project life cycle (PLC) and an SDLC, during which slightly different activities occur. According to Taylor (2004) "the project life cycle encompasses all the activities of the project, while the systems development life cycle focuses on realizing the product requirements".[4]The System Development Life Cycle framework provides a sequence of activities for system designers and developers to follow. It consists of a set of steps or phases in which each phase of the SDLC uses the results of the previous one. A Systems Development Life Cycle (SDLC) adheres to important phases that are essential for developers, such as planning, analysis, design, and implementation, and are explained in the section below. A number of system development life cycle (SDLC) models have been created: waterfall, fountain, spiral, build and fix, rapid prototyping, incremental, and synchronize and stabilize. The oldest of these, and the best known, is the waterfall model: a sequence of stages in which the output of each stage becomes the input for the next. These stages can be characterized and divided up in different ways, including the following[6]: Project planning, feasibility study: Establishes a high-level view of the intended project and determines its goals. Systems analysis, requirements definition: Defines project goals into defined functions and operation of the intended application. Analyzes end-user information needs. Systems design: Describes desired features and operations in detail, including screen layouts, business rules, process diagrams, pseudocode and other documentation. Implementation: The real code is written here. Integration and testing: Brings all the pieces together into a special testing environment, then checks for errors, bugs and interoperability. Acceptance, installation, deployment: The final stage of initial development, where the software is put into production and runs actual business. Maintenance: What happens during the rest of the software's life: changes, correction, additions, moves to a different computing platform and more. This, the least glamorous and perhaps most important step of all, goes on seemingly forever. In the following example (see picture) these stage of the systems development life cycle are divided in ten steps from definition to creation and modification of IT work products:System analysis The goal of system analysis is to determine where the problem is in an attempt to fix the system. This step involves breaking down the system in different pieces to analyze the situation, analyzing project goals, breaking down what needs to be created and attempting to engage users so that definite requirements can be defined. Requirements analysis sometimes requires individuals/teams from client as well as service provider sides to get detailed and accurate requirements; often there has to be a lot of communication to and from to understand these requirements. Requirement gathering is the most crucial aspect as many times communication gaps arise in this phase and this leads to validation errors and bugs in the software program.What is the end user need is also defined in this section. [edit]Design In systems design the design functions and operations are described in detail, including screen layouts, business rules, process diagrams and other documentation. The output of this stage will describe the new system as a collection of modules or subsystems. The design stage takes as its initial input the requirements identified in the approved requirements document. For each requirement, a set of one or more design elements will be produced as a result of interviews, workshops, and/or prototype efforts. Design elements describe the desired software features in detail, and generally include functional hierarchy diagrams, screen layout diagrams, tables of business rules, business process diagrams, pseudocode, and a complete entity-relationship diagram with a full data dictionary. These design elements are intended to describe the software in sufficient detail that skilled programmers may develop the software with minimal additional input design. [edit]Testing The code is tested at various levels in software testing. Unit, system and user acceptance testings are often performed. This is a grey area as many different opinions exist as to what the stages of testing are and how much if any iteration occurs. Iteration is not generally part of the waterfall model, but usually some occur at this stage. In the testing the whole system is test one by one Following are the types of testing: Defect testing the failed scenarios, including defect tracking Path testing Data set testing Unit testing System testing Integration testing Black-box testing White-box testing Regression testing Automation testing User acceptance testing Performance testing

... more info

swetnisha roy hasn't created any events. Follow swetnisha roy to be notified when they create a new event.